AzureOpenAIEmbeddings
Azure OpenAI is a cloud service to help you quickly develop generative AI experiences with a diverse set of prebuilt and curated models from OpenAI, Meta and beyond.
LangChain.js supports integration with Azure OpenAI using the new Azure integration in the OpenAI SDK.
You can learn more about Azure OpenAI and its difference with the OpenAI API on this page. If you don’t have an Azure account, you can create a free account to get started.
This will help you get started with AzureOpenAIEmbeddings embedding
models using LangChain. For detailed
documentation on AzureOpenAIEmbeddings
features and configuration
options, please refer to the API
reference.
Previously, LangChain.js supported integration with Azure OpenAI using the dedicated Azure OpenAI SDK. This SDK is now deprecated in favor of the new Azure integration in the OpenAI SDK, which allows to access the latest OpenAI models and features the same day they are released, and allows seamless transition between the OpenAI API and Azure OpenAI.
If you are using Azure OpenAI with the deprecated SDK, see the migration guide to update to the new API.
Overview​
Integration details​
Class | Package | Local | Py support | Package downloads | Package latest |
---|---|---|---|---|---|
AzureOpenAIEmbeddings | @langchain/openai | ❌ | ✅ |
Setup​
To access Azure OpenAI embedding models you’ll need to create an Azure
account, get an API key, and install the @langchain/openai
integration
package.
Credentials​
You’ll need to have an Azure OpenAI instance deployed. You can deploy a version on Azure Portal following this guide.
Once you have your instance running, make sure you have the name of your instance and key. You can find the key in the Azure Portal, under the “Keys and Endpoint” section of your instance.
If you’re using Node.js, you can define the following environment variables to use the service:
AZURE_OPENAI_API_INSTANCE_NAME=<YOUR_INSTANCE_NAME>
AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME=<YOUR_EMBEDDINGS_DEPLOYMENT_NAME>
AZURE_OPENAI_API_KEY=<YOUR_KEY>
AZURE_OPENAI_API_VERSION="2024-02-01"
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGCHAIN_TRACING_V2="true"
# export LANGCHAIN_API_KEY="your-api-key"
Installation​
The LangChain AzureOpenAIEmbeddings integration lives in the
@langchain/openai
package:
- npm
- yarn
- pnpm
npm i @langchain/openai @langchain/core
yarn add @langchain/openai @langchain/core
pnpm add @langchain/openai @langchain/core
You can find the list of supported API versions in the Azure OpenAI documentation.
If AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME
is not defined, it will fall back to the value of AZURE_OPENAI_API_DEPLOYMENT_NAME
for the deployment name. The same applies to the azureOpenAIApiEmbeddingsDeploymentName
parameter in the AzureOpenAIEmbeddings
constructor, which will fall back to the value of azureOpenAIApiDeploymentName
if not defined.
Instantiation​
Now we can instantiate our model object and embed text:
import { AzureOpenAIEmbeddings } from "@langchain/openai";
const embeddings = new AzureOpenAIEmbeddings({
azureOpenAIApiKey: "<your_key>", // In Node.js defaults to process.env.AZURE_OPENAI_API_KEY
azureOpenAIApiInstanceName: "<your_instance_name>", // In Node.js defaults to process.env.AZURE_OPENAI_API_INSTANCE_NAME
azureOpenAIApiEmbeddingsDeploymentName: "<your_embeddings_deployment_name>", // In Node.js defaults to process.env.AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME
azureOpenAIApiVersion: "<api_version>", // In Node.js defaults to process.env.AZURE_OPENAI_API_VERSION
maxRetries: 1,
});
Indexing and Retrieval​
Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our RAG tutorials under the working with external knowledge tutorials.
Below, see how to index and retrieve data using the embeddings
object
we initialized above. In this example, we will index and retrieve a
sample document using the demo
MemoryVectorStore
.
// Create a vector store with a sample text
import { MemoryVectorStore } from "langchain/vectorstores/memory";
const text =
"LangChain is the framework for building context-aware reasoning applications";
const vectorstore = await MemoryVectorStore.fromDocuments(
[{ pageContent: text, metadata: {} }],
embeddings
);
// Use the vector store as a retriever that returns a single document
const retriever = vectorstore.asRetriever(1);
// Retrieve the most similar text
const retrievedDocuments = await retriever.invoke("What is LangChain?");
retrievedDocuments[0].pageContent;
LangChain is the framework for building context-aware reasoning applications
Direct Usage​
Under the hood, the vectorstore and retriever implementations are
calling embeddings.embedDocument(...)
and embeddings.embedQuery(...)
to create embeddings for the text(s) used in fromDocuments
and the
retriever’s invoke
operations, respectively.
You can directly call these methods to get embeddings for your own use cases.
Embed single texts​
You can embed queries for search with embedQuery
. This generates a
vector representation specific to the query:
const singleVector = await embeddings.embedQuery(text);
console.log(singleVector.slice(0, 100));
[
-0.024253517, -0.0054218727, 0.048715446, 0.020580322, 0.03180832,
0.0028770117, -0.012367731, 0.037383243, -0.054915592, 0.032225136,
0.00825818, -0.023888804, -0.01184671, 0.012257014, 0.016294925,
0.009254632, 0.0051353113, -0.008889917, 0.016855022, 0.04207243,
0.00082589936, -0.011664353, 0.00818654, 0.029020859, -0.012335167,
-0.019603407, 0.0013945447, 0.05538451, -0.011625277, -0.008153976,
0.038607642, -0.03811267, -0.0074440846, 0.047647353, -0.00927417,
0.024201415, -0.0069230637, -0.008538228, 0.003910912, 0.052805457,
-0.023159374, 0.0014352495, -0.038659744, 0.017141584, 0.005587948,
0.007971618, -0.016920151, 0.06658646, -0.0016916894, 0.045667473,
-0.042202685, -0.03983204, -0.04160351, -0.011729481, -0.055905532,
0.012543576, 0.0038848612, 0.007919516, 0.010915386, 0.0033117384,
-0.007548289, -0.030427614, -0.041890074, 0.036002535, -0.023771575,
-0.008792226, -0.049444873, 0.016490309, -0.0060568666, 0.040196754,
0.014106638, -0.014575557, -0.0017356506, -0.011234511, -0.012517525,
0.008362384, 0.01253055, 0.036158845, 0.008297256, -0.0010908874,
-0.014888169, -0.020489143, 0.018965157, -0.057937514, -0.0037122732,
0.004402626, -0.00840146, 0.042984217, -0.04936672, -0.03714878,
0.004969236, 0.03707063, 0.015396165, -0.02055427, 0.01988997,
0.030219207, -0.021257648, 0.01340326, 0.003692735, 0.012595678
]
Embed multiple texts​
You can embed multiple texts for indexing with embedDocuments
. The
internals used for this method may (but do not have to) differ from
embedding queries:
const text2 =
"LangGraph is a library for building stateful, multi-actor applications with LLMs";
const vectors = await embeddings.embedDocuments([text, text2]);
console.log(vectors[0].slice(0, 100));
console.log(vectors[1].slice(0, 100));
[
-0.024253517, -0.0054218727, 0.048715446, 0.020580322, 0.03180832,
0.0028770117, -0.012367731, 0.037383243, -0.054915592, 0.032225136,
0.00825818, -0.023888804, -0.01184671, 0.012257014, 0.016294925,
0.009254632, 0.0051353113, -0.008889917, 0.016855022, 0.04207243,
0.00082589936, -0.011664353, 0.00818654, 0.029020859, -0.012335167,
-0.019603407, 0.0013945447, 0.05538451, -0.011625277, -0.008153976,
0.038607642, -0.03811267, -0.0074440846, 0.047647353, -0.00927417,
0.024201415, -0.0069230637, -0.008538228, 0.003910912, 0.052805457,
-0.023159374, 0.0014352495, -0.038659744, 0.017141584, 0.005587948,
0.007971618, -0.016920151, 0.06658646, -0.0016916894, 0.045667473,
-0.042202685, -0.03983204, -0.04160351, -0.011729481, -0.055905532,
0.012543576, 0.0038848612, 0.007919516, 0.010915386, 0.0033117384,
-0.007548289, -0.030427614, -0.041890074, 0.036002535, -0.023771575,
-0.008792226, -0.049444873, 0.016490309, -0.0060568666, 0.040196754,
0.014106638, -0.014575557, -0.0017356506, -0.011234511, -0.012517525,
0.008362384, 0.01253055, 0.036158845, 0.008297256, -0.0010908874,
-0.014888169, -0.020489143, 0.018965157, -0.057937514, -0.0037122732,
0.004402626, -0.00840146, 0.042984217, -0.04936672, -0.03714878,
0.004969236, 0.03707063, 0.015396165, -0.02055427, 0.01988997,
0.030219207, -0.021257648, 0.01340326, 0.003692735, 0.012595678
]
[
-0.033366997, 0.010419146, 0.0118083665, -0.040441725, 0.0020355924,
-0.015808804, -0.023629595, -0.0066180876, -0.040004376, 0.020053642,
-0.0010797002, -0.03900105, -0.009956073, 0.0027896944, 0.003305828,
-0.034010153, 0.009833873, 0.0061164247, 0.022536227, 0.029147884,
0.017789727, 0.03182342, 0.010869357, 0.031849146, -0.028093107,
0.008283865, -0.0145610785, 0.01645196, -0.029430874, -0.02508313,
0.046178687, -0.01722375, -0.010046115, 0.013101112, 0.0044538635,
0.02197025, 0.03985002, 0.007955855, 0.0008819293, 0.012657333,
0.014368132, -0.014007963, -0.03722594, 0.031617608, -0.011570398,
0.039052505, 0.0020018267, 0.023706773, -0.0046950476, 0.056083307,
-0.08412496, -0.043425974, -0.015512952, 0.015950298, -0.03624834,
-0.0053317733, -0.037251666, 0.0046339477, 0.04193385, 0.023475237,
-0.021378545, 0.013699248, -0.026009277, 0.050757967, -0.0494202,
0.0007874656, -0.07208506, 0.015885983, -0.003259199, 0.015127057,
0.0068946453, -0.035373647, -0.005875241, -0.0032238255, -0.04185667,
-0.022047428, 0.0014326327, -0.0070940237, -0.0027864785, -0.016271876,
0.005097021, 0.034473225, 0.012361481, -0.026498076, 0.0067274245,
-0.026330855, -0.006132504, 0.008180959, -0.049368747, -0.032337945,
0.011049441, 0.00186194, -0.012097787, 0.01930758, 0.07059293,
0.029713862, 0.04337452, -0.0048461896, -0.019976463, 0.011473924
]
Using Azure Managed Identity​
If you’re using Azure Managed Identity, you can configure the credentials like this:
import {
DefaultAzureCredential,
getBearerTokenProvider,
} from "@azure/identity";
import { AzureOpenAIEmbeddings } from "@langchain/openai";
const credentials = new DefaultAzureCredential();
const azureADTokenProvider = getBearerTokenProvider(
credentials,
"https://cognitiveservices.azure.com/.default"
);
const modelWithManagedIdentity = new AzureOpenAIEmbeddings({
azureADTokenProvider,
azureOpenAIApiInstanceName: "<your_instance_name>",
azureOpenAIApiEmbeddingsDeploymentName: "<your_embeddings_deployment_name>",
azureOpenAIApiVersion: "<api_version>",
});
Using a different domain​
If your instance is hosted under a domain other than the default
openai.azure.com
, you’ll need to use the alternate
AZURE_OPENAI_BASE_PATH
environment variable. For example, here’s how
you would connect to the domain
https://westeurope.api.microsoft.com/openai/deployments/{DEPLOYMENT_NAME}
:
import { AzureOpenAIEmbeddings } from "@langchain/openai";
const embeddingsDifferentDomain = new AzureOpenAIEmbeddings({
azureOpenAIApiKey: "<your_key>", // In Node.js defaults to process.env.AZURE_OPENAI_API_KEY
azureOpenAIApiEmbeddingsDeploymentName: "<your_embedding_deployment_name>", // In Node.js defaults to process.env.AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME
azureOpenAIApiVersion: "<api_version>", // In Node.js defaults to process.env.AZURE_OPENAI_API_VERSION
azureOpenAIBasePath:
"https://westeurope.api.microsoft.com/openai/deployments", // In Node.js defaults to process.env.AZURE_OPENAI_BASE_PATH
});
Custom headers​
You can specify custom headers by passing in a configuration
field:
import { AzureOpenAIEmbeddings } from "@langchain/openai";
const embeddingsWithCustomHeaders = new AzureOpenAIEmbeddings({
azureOpenAIApiKey: "<your_key>",
azureOpenAIApiInstanceName: "<your_instance_name>",
azureOpenAIApiEmbeddingsDeploymentName: "<your_embeddings_deployment_name>",
azureOpenAIApiVersion: "<api_version>",
configuration: {
defaultHeaders: {
"x-custom-header": `SOME_VALUE`,
},
},
});
The configuration
field also accepts other ClientOptions
parameters
accepted by the official SDK.
Note: The specific header api-key
currently cannot be overridden
in this manner and will pass through the value from azureOpenAIApiKey
.
Migration from Azure OpenAI SDK​
If you are using the deprecated Azure OpenAI SDK with the
@langchain/azure-openai
package, you can update your code to use the
new Azure integration following these steps:
Install the new
@langchain/openai
package and remove the previous@langchain/azure-openai
package:bash npm2yarn npm install @langchain/openai npm uninstall @langchain/azure-openai
Update your imports to use the new
AzureOpenAIEmbeddings
classe from the@langchain/openai
package:import { AzureOpenAIEmbeddings } from "@langchain/openai";
Update your code to use the new
AzureOpenAIEmbeddings
class and pass the required parameters:const model = new AzureOpenAIEmbeddings({
azureOpenAIApiKey: "<your_key>",
azureOpenAIApiInstanceName: "<your_instance_name>",
azureOpenAIApiEmbeddingsDeploymentName:
"<your_embeddings_deployment_name>",
azureOpenAIApiVersion: "<api_version>",
});Notice that the constructor now requires the
azureOpenAIApiInstanceName
parameter instead of theazureOpenAIEndpoint
parameter, and adds theazureOpenAIApiVersion
parameter to specify the API version.If you were using Azure Managed Identity, you now need to use the
azureADTokenProvider
parameter to the constructor instead ofcredentials
, see the Azure Managed Identity section for more details.If you were using environment variables, you now have to set the
AZURE_OPENAI_API_INSTANCE_NAME
environment variable instead ofAZURE_OPENAI_API_ENDPOINT
, and add theAZURE_OPENAI_API_VERSION
environment variable to specify the API version.
API reference​
For detailed documentation of all AzureOpenAIEmbeddings features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_openai.AzureOpenAIEmbeddings.html
Related​
- Embedding model conceptual guide
- Embedding model how-to guides